INTRODUCTION
MEASURES OF CENTRAL TENDENCY
- THE MEASURE OF CENTRAL TENDENCY :
As
the name implies, refer to some typical central values
Distribution;
There
are five such measures given below:
- The Arithmetic Mean
- The Median
- The Mode
- The Geometric Mean
- The Harmonic Mean
- The Arithmetic Mean:
The
arithmetic mean is algebraically defines “As the sum of all the
observations or measures divided by their number”
The mean of
a sample or a population is computed by adding all of the
observations and dividing by the of
Observations.
Returning to the example of the five women, the mean weight would
equal
(100 + 100 + 130 +
140 + 150)/5 = 620/5 = 124 pounds.
- Geometric Mean:
Technically
defined as "the 'n'th root product of 'n' numbers", the
formula for calculating geometric mean is most easily written as:
Harmonic
Mean:
The
harmonic mean is define as “the reciprocal of the arithmetic mean
of the reciprocals”
Harmonic
Mean Definition:
Harmonic mean is used to calculate the average of a set of numbers. Here the number of elements will be averaged and divided by the sum of the reciprocals of the elements. Harmonic mean is always the lowest mean.
Harmonic mean is used to calculate the average of a set of numbers. Here the number of elements will be averaged and divided by the sum of the reciprocals of the elements. Harmonic mean is always the lowest mean.
FORMULAS
TO CALCULATE THE CENTRAL TENDENCY:
- Arithmetic Mean:
For
Un Group Data:
X
= ∑X/n
For
Un Group Data;
X
= ∑Æ’/∑Æ’
- Geometric Mean:
For
Group Data:
log
G.M =∑log x/n
For
Un Group Data:
log
G.M =∑Æ’.log x/n
Harmonic
Mean:
For
Un Group Data:
H.M
= n/∑ (1/x)
Or
1/H.M = n/∑ (1/x)
For
Group Data:
H.M
= n/∑ (Æ’/x)
Table:
LABOUR
FORCE PARTICIPATION RATES FOR MALE AND FEMALE:
C - I |
F |
C
- B |
X |
FX |
F |
FX |
10 -
14 |
7 |
9.5 -
14.5 |
12 |
84 |
2 |
24 |
15 - 19 |
41 |
14.5 –
19.5 |
17 |
697 |
8 |
136 |
20 - 24 |
79 |
19.5 –
24.5 |
22 |
1738 |
15 |
330 |
25 - 29 |
96 |
24.5 –
29.5 |
27 |
2592 |
12 |
324 |
30 - 34 |
98 |
29.5 -
34.5 |
32 |
3136 |
11 |
352 |
35 - 39 |
98 |
34.5 -
39.5 |
37 |
3626 |
14 |
518 |
40 - 44 |
98 |
39.5 –
44.5 |
42 |
4116 |
12 |
504 |
45 - 49 |
97 |
44.5 -49.5 |
47 |
4559 |
11 |
517 |
50 - 54 |
95 |
49.5 –
54.5 |
52 |
4940 |
10 |
520 |
55 - 59 |
91 |
54.5 -
59.5 |
57
|
5187 |
9 |
513 |
60 - 64 |
61 |
59.5 –
64.5 |
62 |
3782 |
5 |
310 |
65 - 69 |
33 |
64.5 –
69.5 |
67 |
2211 |
6 |
402 |
SUM |
894 |
|
|
36668 |
115 |
4450 |
Calculation
of Arithmetic Mean:
For
Mal :
X
= ∑FX/∑F
X =
36668/894
X =
41.01
For
Female:
X = ∑FX/∑X
X = 4450 /115
X = 38.69
Table:
2 LABOUR FORCE PARTICIPATION RATES:
C - I |
F |
X |
Log
X |
f(log
x) |
F |
f(log
x) |
10 - 14 |
7 |
12 |
1.079 |
7.553 |
2 |
2.158 |
15 - 19 |
41 |
17 |
1.230 |
50.43 |
8 |
9.84 |
20 - 24 |
79 |
22 |
1.342 |
106.018 |
15 |
20.13 |
25 - 29 |
96 |
27 |
1.431 |
137.376 |
12 |
17.172 |
30 - 34 |
98 |
32 |
1.505 |
147.49 |
11 |
16.55 |
35 - 39 |
98 |
37 |
1.568 |
153.664 |
14 |
21.95 |
40 - 44 |
98
|
42 |
1.623 |
159.054 |
12 |
19.476 |
45 - 49 |
97 |
47 |
1.672 |
162.184 |
11 |
18.392 |
50 - 54 |
95 |
52 |
1.716 |
163.02 |
10 |
17.16 |
55 - 59 |
91 |
57 |
1.755 |
159.705 |
9 |
15.795 |
60 - 64 |
61 |
62 |
1.792 |
109.312 |
5 |
8.96 |
65 - 69 |
33 |
67 |
1.826 |
60.258 |
6 |
10.956 |
SUM |
894 |
|
|
1416.064 |
115 |
178.546 |
Calculation
Of Geometric Mean:
For
Male:
log G.M=∑Æ’
(log x)/n
log G.M=
1416.064/894
log G.M=1.583
G.M = Anti log =
38.23
For
Female:
Log G.M =
178.546/115
Log
G.M = 1.552
G.M = Anti log
=35.645
Table:
LABOUR FOURCE PARTICIPATION:
C - I |
F |
X |
F/X |
F |
F/X |
10 -
14 |
7 |
12 |
0.5833 |
2 |
0.166 |
15 -19 |
41 |
17 |
2.4117 |
8 |
0.470 |
20 - 24 |
79 |
22 |
3.5909 |
15 |
0.6818 |
25 -
29 |
96 |
27 |
305555 |
12 |
0.4444 |
30 -
34 |
98 |
32 |
3.0625 |
11 |
0.3437
|
35 -
39 |
98 |
37 |
2.6486 |
14 |
0.3783 |
40 -
44 |
98 |
42 |
2.3333 |
12 |
0.285 |
45 -
49 |
97 |
47 |
2.063 |
11 |
0.234 |
50 -
54 |
95 |
52 |
1.8269 |
10 |
0.192 |
55 -
59 |
91 |
57 |
1.5964 |
9 |
0.157 |
60 -
64 |
61 |
62 |
0.9838 |
5 |
0.080 |
65 -
69 |
33 |
67 |
0.4925 |
6 |
0.089 |
SUM |
894 |
|
|
115 |
|
Calculation
of Harmonic Mean:
For
Male;
H.M = n/∑
(Æ’/x)
H.M =
894/25.5484
H.M =
34.992
For
Female: H.M = 115/3.4575
H.M =
33.26
Table
No: 4 TOTAL OF LABOUR FOURCE AND UN EMPLOYED
RATES
C -
I |
F |
C -
B |
X |
FX |
Log x |
∑Æ’(log
x) |
f/x |
10 -
14 |
4.96 |
9.5 -
14.5 |
12 |
59.52 |
1.079 |
5.3518 |
0.413 |
15 -
19 |
25.9 |
14.5 -
19.5 |
17 |
440.3 |
1.230 |
31.857 |
1.523 |
20 -
24 |
48.94 |
19.5 -
24.5 |
22 |
1076.68 |
1.342 |
65.677 |
2.224 |
25 -
29 |
54.12 |
24.5 -
29.5 |
27 |
1461.24 |
1.431 |
77.445 |
2.004 |
30 -
34 |
53.83 |
29.5 -
34.5 |
32 |
1722.56 |
1.505 |
81.014 |
1.682 |
35 -
39 |
56.1 |
34.5 -
39.5 |
37 |
2075.7 |
1.568 |
87.964 |
1.516 |
40 -
44 |
55.86 |
39.5 -
44.5 |
42 |
2346.12 |
1.623 |
90.66 |
1.33 |
45 -
49 |
56.61 |
44.5 -
49.5 |
47 |
2660.67 |
1.672 |
94.651 |
1.204 |
50 -
54 |
58.02 |
49.5 -
54.5 |
52 |
3017.04 |
1.716 |
99.56 |
1.115 |
55 -
59 |
53.31 |
54.5 -
59.5 |
57 |
3038.67 |
1.755 |
93.55 |
0.935 |
60 -
64 |
36.1 |
59.5 -
64.5 |
62 |
2238.2 |
1.792 |
64.69 |
0.582 |
65 -
69 |
22.2 |
64.5
-69.5 |
67 |
1487.4 |
1.826 |
40.537 |
0.331 |
|
525.95s |
|
|
21624.1 |
|
832.956 |
14.859 |
Calculation
of Arithmetic Mean For Total:
X
= ∑Æ’ x/∑Æ’
X
= 21624.1/525
X
=41.114
Calculation
op Geometric Mean:
log
G.M =∑Æ’ (log X)/n
log
G.M = 832.95/525.95
log
G.M = 1.5837
G.M
Anti log = 1.5837 = 38.34
Calculation
of Harmonic Mean:
H.M
= n/∑ (Æ’/x)
H.M
= 525.95/14.859
H.M
= 35.39
TABLE
NO: 5 UN
EMPLOYED RATES FOR MALE AND FEMALE:
C - I |
F |
C – B |
X |
FX |
F |
FX |
log x
|
F(log x) |
F(log x) |
F/X |
F/x |
10 – 14 |
22 |
9.5 - 14.5 |
12 |
264 |
37 |
444 |
1.079 |
23.738 |
39.923 |
1.833 |
3.083 |
15 – 19 |
13 |
14.5 –19.5 |
17 |
221 |
21 |
357 |
1.230 |
15.99 |
25.83 |
0.764 |
1.235 |
20 – 24 |
7 |
19.5 –24.5 |
22 |
154 |
20 |
440 |
1.342 |
9.394 |
26.84 |
0.318 |
0.909 |
25 – 29 |
4 |
24.5 - 29.5 |
27 |
108 |
17 |
459 |
1.431 |
5.724 |
24.327 |
0.148 |
0.629 |
30 – 34 |
2 |
29.5 –
34.5 |
32 |
64 |
8 |
256 |
1.505 |
3.01 |
12.04 |
0.062 |
0.25 |
35 – 39 |
1 |
34.5 –
39.5 |
37 |
37 |
2 |
74 |
1.568 |
1.568 |
3.136 |
0.027 |
0.054 |
40 – 44 |
1 |
39.5 –
44.5 |
42 |
42 |
5 |
210 |
1.623 |
1.623 |
8.115 |
0.023 |
0.119 |
45 – 49 |
1 |
44.5 –
49.5 |
47 |
47 |
8 |
376 |
1.672 |
1.672 |
13.376 |
0.021 |
0.3170 |
50 – 54 |
3 |
49.5 –
54.5 |
52 |
156 |
22 |
1144 |
1.716 |
5.148 |
37.752 |
0.057 |
0.423 |
55 – 59 |
5 |
54.5 –
59.5 |
57 |
285 |
37 |
2109 |
1.755 |
8.775 |
64.935 |
0.087 |
0.649 |
60 – 64 |
12 |
59.5 –
64.5 |
62 |
744 |
62 |
3844 |
1.792 |
21.504 |
111.10 |
0.193 |
1 |
65 – 69 |
14 |
64.5 –
69.5 |
67 |
938 |
67 |
4489 |
1.826 |
25.564 |
122.34 |
0.208 |
1 |
SUM |
85 |
|
|
3060 |
306 |
14202 |
|
122.71 |
612.06 |
3.741 |
9.521 |
Calculation
of Arithmetic Mean:
For
Male:
X = ∑Æ’
X/∑Æ’
X =
3060/85 = 36.42
For
Male:
X =
14202/306
X = 46.41
Calculation
of Geometric Mean:
For
Male:
Log G.M =
∑Æ’.log x/n
Log G.M =
122.71/85
Log G.M =
1.443
G.M Antilog
= 1.443
G.M = 27.73
For
Female:
Log G.M =
865.34/306
G.M Antilog =
1.827
G.M = 26.63
Calculation
of Harmonic Mean:
For
Male:
H.M = n/∑
(Æ’/x)
H.M = 85/3.741
H.M = 23
For
Female:
H.M =
306/9.521
H.M = 32.13
CONTENTS
- INTRODUCTION
- MEASURE OF CENTRAL TENDENCY
- DIFFINITIONS OF:
- ARITHEMETIC MEAN
- GEOMETRIC MEAN
- HARMONIC MEAN
- FORMULAS FOR THESE MEASURES
- MATHIMATICAL CALCULATION
- FIGURES AND TABLES
- RELATIONSHIP / IMPHERICAL RELATIONSHIP
- PROPERTIES AND ANALIYSIS
- CONCLUSION
- REFRENCE
TITLE:
MEASURE OF CENTRAL TENDENCY
0 comments:
Post a Comment